

October 7, 2019

VIA E-MAIL

Mr. John Iacoangeli, Principal Beckett & Raeder, Inc. 535 West William, Suite 101 Ann Arbor, MI 48013

RE: SEPTEMBER 2019 RESULTS

POST-CONSTRUCTION ACME CREEK MONITORING GRAND TRAVERSE TOWN CENTER, ACME, MICHIGAN

Dear Mr. Iacoangeli:

The purpose of this letter is to transmit the results of post-construction surface water monitoring of Acme Creek completed by Barr Engineering (Barr) in September 2019 on behalf of the Village at Grand Traverse, LLC (VGT) at the Grand Traverse Town Center (GTTC) site in Acme Township, Grand Traverse County, Michigan. As you are aware, post-construction monitoring activities were initiated in September 2015. This report presents the results of the fourth quarter of the fourth year post-construction monitoring event (Year 4/Quarter 4).

Post-construction stream sampling recommendations were outlined in the site development plan for the GTTC (Site Plan Approval for Phase I of the SUP)¹ and later incorporated into a site inspection, monitoring, and maintenance plan submitted to the Township in September 2015 (Monitoring Plan).² The goal of the post-construction monitoring program is to evaluate water quality in Acme Creek over time. To facilitate the monitoring program, two fixed testing locations--one at the upstream point where Acme Creek enters the property and one at the downstream point where Acme Creek leaves the site--have been established (see Figure 1). Baseline (pre-construction) water quality samples were collected from both locations on July 26, 2011.

The Monitoring Plan calls for the receiving water for the GTTC site (Acme Creek) to be monitored for dissolved oxygen concentration, water temperature, specific conductivity, pH, volatile organic compounds (VOCs), total organic carbon (TOC), e. Coli, total dissolved solids (TDS), total suspended solids (TSS), water velocity and elevation. The monitoring was performed on a monthly basis for a period of one year following the completion of construction and on a quarterly basis during post-construction years 2 through 4.

¹ The Village at Grand Traverse Phase 1, Stormwater Management Recommendations, King & MacGregor Environmental, Inc., December 22, 2011

² Inspection, Monitoring and Maintenance Plan for the Storm Water Management System, Horizon Environmental Corporation, September 2015

Monitoring is scheduled to be performed on a semi-annual basis for post-construction years 5 and beyond. This was the final quarterly (Year 4, Quarter 4) post-construction monitoring event, and was completed on September 16, 2019. The results of this sampling event along with the results of the pre-construction (baseline) and prior post-construction sampling events are provided on Table 1.

DATA SUMMARY/EVALUATION

Dissolved oxygen, water temperature, specific conductivity and pH were measured at both of the stream gauges using an YSI 556 multi-parameter water quality meter. The data collected at each stream gauge were compared to available water quality standards in the Part 4 Water Quality Standards of Part 31, Water Resources Protection (MCL 324.3101) of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended (Part 4). The following provides a summary of these results:

- The dissolved oxygen concentrations at both the upstream (10.1 mg/L) and downstream (10.0 mg/L) stream gauges were higher than the minimum standard of 7.0 mg/L specified under Part 4.
- The water temperature at both the upstream (52.5°F) and downstream (52.7°F) stream gauges were nearly identical. Both readings are below the maximum temperature in May specified under Part 4 for streams supporting cold water fish (63°F).
- The pH readings at both the upstream (7.89 S.U.) and downstream (8.13 S.U.) stream gauges were both within the pH range of 6.5 to 9.0 S.U specified under Part 4.

Stream samples were also collected for laboratory analyses of VOCs, TOC, TDS, TSS, e. Coli, and turbidity at both the upstream and downstream stream gauges. Laboratory data sheets are provided in Attachment I. A summary of the results compared to available water quality standards under Part 4 is provided as follows:

- VOCs were below laboratory detection limits at both the upstream and downstream gauges.
- The TDS concentrations at both the upstream (240 mg/L) and downstream (240 mg/L) stream gauges were significantly lower than the maximum TDS standard of 500 mg/L specified under Part 4.
- The upstream e. Coli concentration (117 colonies/100ml) and downstream e. Coli concentrations (96 colonies/100ml) were lower than maximum (300 colonies/100 ml) e.Coli concentration for total body contact.
- There was no significant difference in the TOC, TSS, and turbidity levels observed at the upstream and downstream locations.

Additional stream data, including water velocity and water elevation, were collected as part of this monitoring event. Stream velocities were measured using a Flo-Mate Model 2000 flowmeter. The results of the additional data collected are summarized on Table 1.

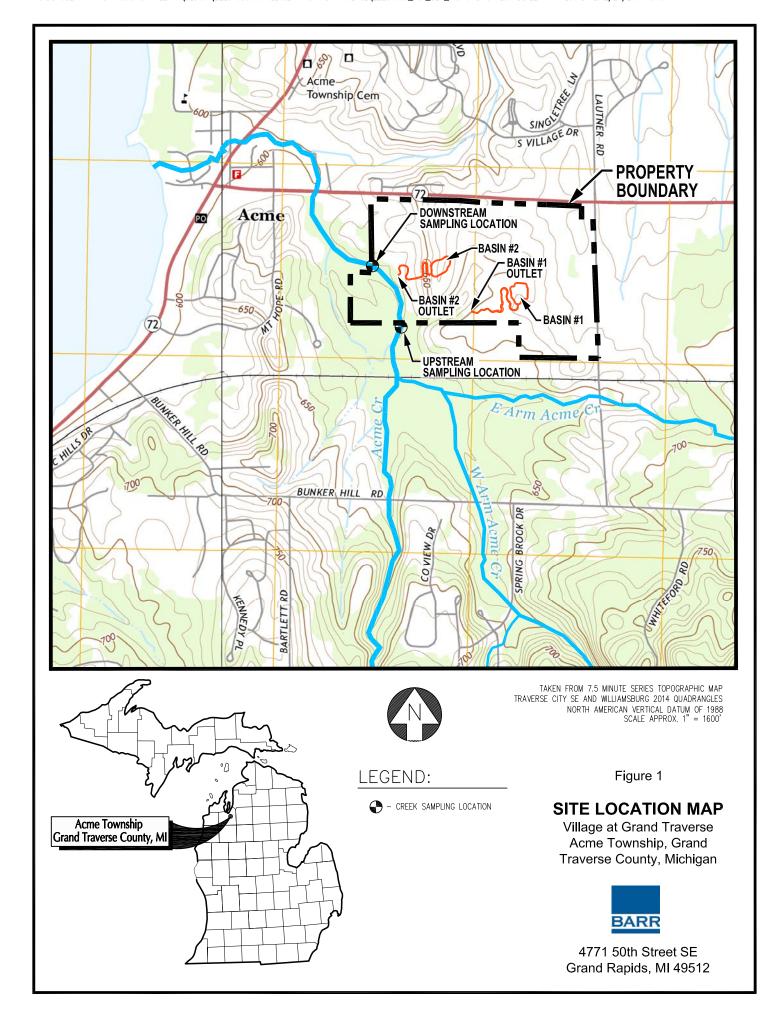
CONCLUSIONS

The results of this quarterly post-construction monitoring event (Year 4/Quarter 4) indicate that water quality in Acme Creek adjacent to the GTTC site meets or exceeds the Part 4 Water Quality Standards prescribed under Part 31 of the Water Resources Protection Section of NREPA (MCL 324.3101).

If you have questions or require additional information regarding this sampling event, please contact me at 616.554.3210.

Sincerely,

BARR ENGINEERING


Allen J. Reilly, Jr. Project Manager

cc: J. Zollinger, Acme Township

S. Schooler, VGT

All V. Billy .V.

enclosures

TABLE 1 ACME CREEK MONITORING RESULTS GRAND TRAVERSE TOWN CENTER SITE

ACME TOWNSHIP, GRAND TRAVERSE COUNTY, MICHIGAN

				Septemb	per 18, 2015	•		Novemb	oer 16, 2015	Decemb	per 4, 2015	Januar	y 29, 2016	February 18, 2016	
		July 26, 2	2011 Baseline	Post-Co	onstruction	Post-Co	nstruction	Post-Co	onstruction	Post-Co	nstruction	Post-Co	onstruction	Post-Co	onstruction
	Part 4 Water	Pre-Co	nstruction	(Year 1	./Month 1)	(Year 1	/Month 2)	(Year 1	./Month 3)	(Year 1	/Month 4)	(Year 1	/Month 5)	(Year 1	L/Month 6)
Study Parameter	Quality Standards	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream
Macroinvertebrates	NA		-5												
e Coli															
(colonies/100 ml)	(1)	100	72	55	81	129	53	29	17	22	27	20	36	33	31
Dissolved Oxygen		(0)	(2)												
(mg/L)	7 (minimum)	11.4 ⁽²⁾	11.6 ⁽²⁾	12.4	12.4	11.0	11.2	10.9	11.3	11.5	11.5	13.8	13.7	13.4	14.3
Water Temperature															
(°F)	(3)	56.1	55.6	49.1	49.0	50.2	50.9	46.3	46.0	42.9	42.8	39.0	39.0	36.1	35.8
Specific Conductivity															
(μs/cm)	NA	334	334	294	293	343	432	345	358	339	341	346	346	338	330
рН															
(S.U.)	6.5 to 9.0	8.36	8.39	7.70	6.95	8.24	8.23	8.81	8.82	8.21	8.05	8.03	8.08	8.05	7.33
Volatile Organic															
Compounds	Various	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)
Total Organic Carbon															
(mg/L)	NA	1.3	1	<1.0	1.0	1.6	1.5	1.6	1.4	1.4	1.4	1.4	1.4	<1.0	<1.0
Total Dissolved Solids															
(mg/L)	500	204	180	250	260	240	230	240	240	240	240	210	240	240	230
Total Suspended Solids															
(mg/L)	Visual Standard	11.2	4.4	<5.0	<5.0	8	7	4	5	5	6	5	4	6	9
Turbidity															
(NTU)	Visual Standard			1.99	1.48	3.06	3.10	2.3	1.7	3.0	2.4	0.93	0.98	1.52	1.61
Water Velocity															
(ft/sec)	NA	1.3	1.2	0.9	1.6	1.4	3.2	3.1	2.8	1.9	2.0	1.7	1.8	1.8	1.6
Water Elevation (NAVD 88)	NA	609.97	606.04	610.01	606.11	610.12	606.17	610.09	606.22	610.10	606.23	610.08	606.23	610.04	606.13
(11/4/1/00)	II INA	009.97	000.04	010.01	909.11	010.17	000.17	610.09	606.22	010.10	000.23	910.08	000.23	010.04	000.13

- 1) Parial body contact maximum value 1,000 colonies per 100 ml (November 1 through April 30) and total body contact maximum value 300 colonies per 100 ml (May 1 through October 31)
- 2) Baseline sample reported as percent saturation. Value converted to mg/L utilizing reported temperature, specific conductivity and standard barometric pressure
- 3) Temperature varies seasonally
- 4) EPA 8260 scan. All compounds below laboratory detection limits

TABLE 1 ACME CREEK MONITORING RESULTS GRAND TRAVERSE TOWN CENTER SITE

ACME TOWNSHIP, GRAND TRAVERSE COUNTY, MICHIGAN

				March	16, 2016	April	21, 2016	May	26, 2016	June	22, 2016	July 2	20, 2016	Augus	t 24, 2016
		July 26, 2	2011 Baseline	Post-Co	nstruction	Post-Co	nstruction	Post-Co	onstruction	Post-Co	nstruction	Post-Co	nstruction	Post-Co	onstruction
	Part 4 Water	Pre-Co	nstruction	(Year 1	/Month 7)	(Year 1	/Month 8)	(Year 1	/Month 9)	(Year 1/	Month 10)	(Year 1/	'Month 11)	(Year 1/	/Month 12)
Study Parameter	Quality Standards	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream
Macroinvertebrates	NA		-5												
e Coli											4		4-1		4-1
(colonies/100 ml)	(1)	100	72	86	126	43	21	16	243	19	30 ⁽⁵⁾	57	60 ⁽⁵⁾	66	75 ⁽⁵⁾
Dissolved Oxygen		4-1													
(mg/L)	7 (minimum)	11.4 ⁽²⁾	11.6 ⁽²⁾	11.4	11.7	11.3	11.3	11.8	12.1	10.9	10.8	10.1	9.7	11.2	11.3
Water Temperature															!
(°F)	(3)	56.1	55.6	44.2	44.0	47.6	47.5	54	53.6	56.5	55.5	57.8	59.4	56.8	57.9
Specific Conductivity															
(μs/cm)	NA	334	334	482	534	345	324	234	326	422	433	219	220	284	287
рН															
(S.U.)	6.5 to 9.0	8.36	8.39	7.69	7.69	7.64	7.89	8.55	8.42	8.42	8.15	8.18	8.01	8.48	8.37
Volatile Organic															!
Compounds	Various	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)
Total Organic Carbon															!
(mg/L)	NA	1.3	1	3.5	3.6	1.2	1.3	0.8	0.7	1.0	1.6	1.3	1.2	0.9	1.0
Total Dissolved Solids															
(mg/L)	500	204	180	220	220	240	240	240	240	240	230	250	250	260	260
Total Suspended Solids															!
(mg/L)	Visual Standard	11.2	4.4	20	33	7	4	2	4	4	6	4	5	9	8
Turbidity															
(NTU)	Visual Standard			10.4	12.9	2.0	2.9	1.0	3.0	2.8	2.6	2.6	2.2	2.2	2.0
Water Velocity															
(ft/sec)	NA	1.3	1.2	3.67	3.04	3.3	3.1	2.4	2.0	2.5	2.2	2.5	2.1	2.2	2.3
Water Elevation															
(NAVD 88)	NA	609.97	606.04	610.30	606.44	610.09	606.17	610.05	606.11	610.01	605.65	610	605.67	610.01	605.69

- 1) Parial body contact maximum value 1,000 colonies per 100 ml (November 1 through April 30) and total body contact maximum value 300 colonies per 100 ml (May 1 through October 31)
- 2) Baseline sample reported as percent saturation. Value converted to mg/L utilizing reported temperature, specific conductivity and standard barometric pressure
- 3) Temperature varies seasonally
- 4) EPA 8260 scan. All compounds below laboratory detection limits
- 5) E coli. value reports the geometric mean of three samples collected at the downstream location (left, center, and right)

TABLE 1 ACME CREEK MONITORING RESULTS GRAND TRAVERSE TOWN CENTER SITE ACME TOWNSHIP, GRAND TRAVERSE COUNTY, MICHIGAN

				Novemb	er 1, 2016	Februai	ry 23, 2017	May	31, 2017	Augus	t 30, 2017	Novemb	per 13, 2017	February 13, 2018		
		July 26, 2	2011 Baseline	Post-Co	nstruction	Post-Co	nstruction	Post-Co	onstruction	Post-Co	onstruction	Post-Co	onstruction	Post-Co	onstruction	
	Part 4 Water	Pre-Co	nstruction	(Year 2/Quarter 1)		(Year 2/Quarter 2)		(Year 2/Quarter 3)		(Year 2,	Quarter 4)	(Year 3	/Quarter 1)	(Year 3	/Quarter 2)	
Study Parameter	Quality Standards	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	
Macroinvertebrates	NA		-5													
e Coli																
(colonies/100 ml)	(1)	100	72	39	18 ⁽⁵⁾	23	31	45	53	31	38	41	73	10	6	
Dissolved Oxygen		(-)	(2)													
(mg/L)	7 (minimum)	11.4 ⁽²⁾	11.6 ⁽²⁾	10.5	10.5	9.9	9.7	9.4	10.1	9.6	9.7	11.8	11.7	13.8	14.1	
Water Temperature																
(°F)	(3)	56.1	55.6	51.4	50.5	43.8	44.0	50.2	50.0	53.8	54.1	43.5	44.2	36.8	36.8	
Specific Conductivity																
(μs/cm)	NA	334	334	740	740	330	353	474	497	209	208	306	359	355	324	
рН																
(S.U.)	6.5 to 9.0	8.36	8.39	8.10	8.13	8.79	8.58	7.98	7.96	8.47	8.46	7.92	7.27	7.76	7.88	
Volatile Organic				(4)	(4)											
Compounds	Various	(4)	(4)	Toluene 2 ⁽⁴⁾	Toulene 3 ⁽⁴⁾	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	
Total Organic Carbon																
(mg/L)	NA	1.3	1	1.4	1.5	1.8	1.8	1.6	1.7	0.6	0.5	0.9	1.3	18	25	
Total Dissolved Solids																
(mg/L)	500	204	180	240	240	240	250	240	250	240	240	250	240	240	250	
Total Suspended Solids																
(mg/L)	Visual Standard	11.2	4.4	5	5	6	4	4	7	4	4	8	7	5	6	
Turbidity																
(NTU)	Visual Standard			0.3	1.2	2.0	2.0	1.7	1.8	2.6	3.0	3.3	3.2	5.4	8.5	
Water Velocity]									
(ft/sec) Water Elevation	NA	1.3	1.2	2.11	1.91	2.31	2.01	1.78	2.28	2.4	2.3	0.87	0.48	0.86	0.42	
		600.07		640.44	605.04	640.06	605.77	640.06	605.60	600.06	605.65	640.06	606.24	640.06	505.10	
(NAVD 88)	NA	609.97	606.04	610.11	605.81	610.08	605.77	610.00	605.69	609.96	605.65	610.08	606.24	610.00	606.10	

- 1) Parial body contact maximum value 1,000 colonies per 100 ml (November 1 through April 30) and total body contact maximum value 300 colonies per 100 ml (May 1 through October 31)
- 2) Baseline sample reported as percent saturation. Value converted to mg/L utilizing reported temperature, specific conductivity and standard barometric pressure
- 3) Temperature varies seasonally
- 4) EPA 8260 scan. All compounds below laboratory detection limits except as noted.
- 5) E coli. value reports the geometric mean of three samples collected at the downstream location (left, center, and right)

TABLE 1 ACME CREEK MONITORING RESULTS GRAND TRAVERSE TOWN CENTER SITE ACME TOWNSHIP, GRAND TRAVERSE COUNTY, MICHIGAN

				May	1, 2018	Augus	t 20, 2018	Novem	ber 5, 2018	Marc	h 7, 2019	May	15, 2019	Septemb	er 16, 2019
		July 26, 2	2011 Baseline	Post-Co	onstruction	Post-Co	onstruction	Post-Co	onstruction	Post-Co	onstruction	Post-Co	nstruction	Post-Co	nstruction
	Part 4 Water	Pre-Construction		(Year 3/Quarter 3)		(Year 3/Quarter 4)		(Year 4,	/Quarter 1)	(Year 4,	/Quarter 2)	(Year 4/	Quarter 3)	(Year 4/	'Quarter 4)
Study Parameter	Quality Standards	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream
Macroinvertebrates	NA		-5												
e Coli															
(colonies/100 ml)	(1)	100	72	43	58	40	36	39	53	40	20	15	19	117	96
Dissolved Oxygen		(0)	(0)												i
(mg/L)	7 (minimum)	11.4 ⁽²⁾	11.6 ⁽²⁾	21.7	23.7	13.4	13.4	11.2	11.0	13.7	13.8	11.2	11.3	10.1	10.0
Water Temperature	(2)														
(°F)	63 ⁽³⁾	56.1	55.6	47.0	46.9	53.8	53.6	46.2	46.0	37.8	37.6	49.3	48.7	52.5	52.7
Specific Conductivity															i
(μs/cm)	NA	334	334	334	341	285	285	338	343	298	303	610	623	290	303
рН															ĺ
(S.U.)	6.5 to 9.0	8.36	8.39	8.10	7.89	8.72	8.70	7.49	7.47	7.29	6.66	7.63	7.42	7.89	8.13
Volatile Organic															i
Compounds	Various	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)
Total Organic Carbon															i
(mg/L)	NA	1.3	1	1.5	1.7	0.96	0.82	1.9	1.5	1.7	3.2	1.3	1.4	3.2	6
Total Dissolved Solids															i
(mg/L)	500	204	180	240	250	250	250	250	250	250	250	250	250	240	240
Total Suspended Solids															i
(mg/L)	Visual Standard	11.2	4.4	4	4	6	5	2	3	3	2	5	4	8	9
Turbidity															i
(NTU)	Visual Standard			1.5	1.0	1.2	2.1	0.8	0.4	1.3	1.2	2.3	2.5	2.9	2.8
Water Velocity															
(ft/sec)	NA	1.3	1.2	0.68	0.74	0.81	0.53	1.2	1.2	1.2	0.96	1.4	0.70	0.83	0.78
Water Elevation															
(NAVD 88)	NA	609.97	606.04	610.01	606.13	609.92	605.96	610.11	606.23	609.97	606.06	610.01	606.09	610.01	607.77

- 1) Parial body contact maximum value 1,000 colonies per 100 ml (November 1 through April 30) and total body contact maximum value 300 colonies per 100 ml (May 1 through October 31)
- 2) Baseline sample reported as percent saturation. Value converted to mg/L utilizing reported temperature, specific conductivity and standard barometric pressure
- 3) Temperature varies seasonally (September Value Shown)
- 4) EPA 8260 scan. All compounds below laboratory detection limits except as noted.

ATTACHMENT I

LABORATORY DATA SHEETS

(M)5	OS ANALYTI	CAL	Client / Compan
	4125 Cedar Run Road, Suit	te B	Site Address :
DI (004) 040	Traverse City, MI 4968	190	Project # / WSS
Phone: (231) 946- Email: shanna@sosa		1) 946-8741 analytical.com	Sampling Comp
Quote # :	PO#:		Sampler's Name
Miscellaneous Information	:		Send Results To
			Address :
			Phone :
			Invoice To:
			Address :
Sample	e Identification	Collection I	nformation Co

SOS ANALYTICA	AL	Client / Comp	oany Name	BARR			AND RAPIRS	SOCIETY .				14	16	2	1			
4125 Cedar Run Road, Suite B	-	Site Address	: 477	H SOIG	57.	SE, 600	AND MARIES	MI							06			_
Traverse City, MI 49684 Phone: (231) 946-6767 Fax: (231) 94	16-8741	Project # / W	SSN#:			C	495	12	Cool	er Tem	p (°C))		F	age _		of _	
Email: shanna@sosanalytical.com www.sosanal		Sampling Co	mpany :	BARA Nika Pa DAMIE		34, 27, 1					Α	naly	sis I	nfor	mati	on		
Quote #: PO #:		Sampler's Na	ame:	nika Po	tw				MEOH	МЕОН	МЕОН	МЕОН	МЕОН	MEOH	МЕОН	МЕОН	МЕОН	
Miscellaneous Information :		Send Results	<u>s To</u> :	JAMIE	202	era			NaOH	NaOH	NaOH I	NaOH I	NaOH I	NaOH 1	NaOH 1		NaOH P	
		Address :	*							C	ž o	ž o	ž o	ž o	ž o			
		Phone :		Fax / E	E-mail :	JEDELY	ne BARR.	COM	O3 H2SO4	HNO ₃ H ₂ SO ₄	O ₃ H ₂ S	HNO ₃ H ₂ SO ₄	HNO ₃ H ₂ SO ₄	O ₃ H ₂ SO ₄	O ₃ H ₂ SO ₄	O ₃ H ₂ SO ₄	O3 H ₂ SO4	
		Invoice To:							L HNO3	I I	L HNO ₃	100	1000	L HNO ₃	L HNO ₃		L HNO ₃	* 0
		Address :							g lo	₽ ~	S S	HC HC	권	Ā	HCL	HCL	HCL	Due :
Sample Identification	Collection Date	Information Time	# of Containers	Matrix DW, WW, GW, Soil, Oil, Sludge	C	Comments /	Other Analysis	s		1	S	7						RUSH Due:
Acmy DOWNSTREAM	2-16	133 OPM	5	S W Comp	100	0.3	1		X	X	X	X						
Acmi Dounstrian 2	0 (14 00 PM	5	5 W Grab			¥II		X	X	X	X						
3		AM		Grab	j													
4		PM AM		Comp														
		PM		Comp	, P													
5		AM PM		Grab Comp														
6		AM		Grab														
7		PM		Comp														
P.		AM PM	9.0	Grab Comp				- 1										
8		AM	(Grab														
9		PM AM		Comp														
•		PM		Comp														
10		AM		Grab	1		¥											
11		PM AM		Comp														
		PM		Comp														
12		AM		Grab														
13		PM AM		Comp														
		PM		Comp														
14		AM		Grab														
16	-	PM		Comp														
15		AM PM		Grab Comp														
	te: 1-16-19		Time:	3 AM	Receive	ed by:				Date:	,				Time:			AM PM
Relinquished by:	te:		Time:	AM PM	Receive	ed in lab by:	Whinn	ens		Date:	9/1	e	19		Time:	3:5	0	PM
							· · ·				- 1	-	r					

4125 Cedar Run Rd., Suite B Traverse City, MI 49684 Phone 231-946-6767 Fax 231-946-8741 www.sosanalytical.com

COMPANY:

BARR ENGINEERING

SOS PROJECT NO:

195110

NAME:

VIECT NO:

SAMPLED BY:

MIKE POTTER-BARR ENG

PROJECT NO: WSSN:

ACME

DATE SAMPLED:

9/16/2019

WELL PERMIT:

TIME SAMPLED:

1:30 PM

TAX ID: LOCATION:

SAMPLE MATRIX:

SURFACE WATER

DATE RECEIVED:

9/16/2019

ACME

MI

TIME RECEIVED:

3:50 PM

COUNTY:

GRAND TRAVERSE

TWP:

INORGANICS/BACTERIA

						Date	Drinking Water
No	o: Analysis	Concentration	LOD	<u>Units</u>	<u>Analyst</u>	Completed	Reg Limit(MCL)
SA	MPLE ID: ACME DOWNSTREAM						
1	E.COLI SM9223-B MPN	96		Colonies/100 i	nLKMJ	9/17/2019	
1	RESIDUE, FILTERABLE(TDS)/SM2540C	240	10	mg/L (PPM)	AD	9/16/2019	
1	RESIDUE, NON-FILTERABLE(TSS)/SM2540D	9	1	mg/L (PPM)	AD	9/20/2019	
1	TOTAL ORGANIC CARBON EPA 415.1	6.1	0.5	mg/L (PPM)	ALS	9/26/2019	
SA	MPLE ID: ACME UPSTREAM						
2	E.COLI SM9223-B MPN	117		Colonies/100 i	nLKMJ	9/17/2019	
2	RESIDUE, FILTERABLE(TDS)/SM2540C	240	10	mg/L (PPM)	AD	9/16/2019	
2	RESIDUE, NON-FILTERABLE(TSS)/SM2540D	8	1	mg/L (PPM)	AD	9/20/2019	
2	TOTAL ORGANIC CARBON EPA 415.1	3.2	0.5	mg/L (PPM)	ALS	9/26/2019	

ND = NOT DETECTED LOD = LIMIT OF DETECTION SMCL = FEDERAL NON-ENFORCEABLE LIMIT MCL = MAXIMUM CONTAMINANT LEVEL s.u. = STANDARD pH UNITS REPORTED AT 25 C DISS = DISSOLVED

APPROVED BY:

SHANNA SHEA LAB MANAGER

Page 1 of 1

4125 Cedar Run Rd., Suite B Traverse City, MI 49684 Phone 231-946-6767 Fax 231-946-8741 www.sosanalytical.com

COMPANY:

BARR ENGINEERING

NAME:

PROJECT NO:

WSSN: LOCATION:

SAMPLED BY:

ACME

SAMPLE ID:

SURFACE WATER

ACME DOWNSTREAM

ACME

MIKE POTTER-BARR ENG

DATE RECEIVED:

SOS PROJECT NO:

DATE SAMPLED:

TIME SAMPLED:

SAMPLE MATRIX:

9/16/2019

195110 - 1

9/16/2019

1:30 PM

TIME RECEIVED: 3:50 PM

EPA 8260 VOLATILE ORGANICS

Units= ug/L (PPB) Analyst= SW/MM Date Extracted= Date Completed= 9/25/2019 Prep Method= EPA 5030B

<u>Analyte</u>	Concentration	LOD	Analyte	Concentration	LOD
ACETONE	ND	5	cis-1,3-DICHLOROPROPENE	ND	1
BENZENE	ND	1	trans-1,3-DICHLOROPROPENE	ND	1
BROMOBENZENE	ND	1	DIETHYL ETHER	ND	5
BROMOCHLOROMETHANE	ND	1	ETHYLBENZENE	ND	1
BROMODICHLOROMETHANE	ND	1	IODOMETHANE	ND	1
BROMOFORM	ND	1	ISOPROPYLBENZENE	ND	1
BROMOMETHANE	ND	1	ISOPROPYLTOLUENE	ND	1
n-BUTYLBENZENE	ND	1	METHYL ETHYL KETONE	ND	5
s-BUTYLBENZENE	ND	1	METHYL-t-BUTYL ETHER	ND	5
t-BUTYLBENZENE	ND	1	METHYLENE CHLORIDE	ND	5
CARBON DISULFIDE	ND	1	MIBK	ND	5
CARBON TETRACHLORIDE	ND	1	2-METHYLNAPHTHALENE	ND	5
CHLOROBENZENE	ND	1	NAPHTHALENE	ND	5
CHLOROFORM	ND	1	n-PROPYLBENZENE	ND	1
CHLOROETHANE	ND	1	STYRENE	ND	1
CHLOROMETHANE	ND	1	1,1,1,2-TETRACHLOROETHANE	ND	1
DIBROMOCHLOROMETHANE	ND	1	1,1,2,2-TETRACHLOROETHANE	ND	1
DIBROMOMETHANE	ND	1	TETRACHLOROETHENE	ND	1
1,2-DIBROMO3CHLOROPROPAN	E ND	5	TOLUENE	· ND	1
1,2-DIBROMOETHANE	ND	1	1,2,3-TRICHLOROBENZENE	ND	1
1,2-DICHLOROBENZENE	ND	1	1,2,4-TRICHLOROBENZENE	ND	1
1,3-DICHLOROBENZENE	ND	1	1,1,1-TRICHLOROETHANE	ND	1
1,4-DICHLOROBENZENE	ND	1	1,1,2-TRICHLOROETHANE	ND	1
DICHLORODIFLUOROMETHANE	ND	1	TRICHLOROETHENE	ND	1
1,1-DICHLOROETHANE	ND	1	TRICHLORFLUOROMETHANE	ND	1
1,2-DICHLOROETHANE	ND	1	1,2,3-TRICHLOROPROPANE	ND	1
1,1-DICHLOROETHENE	ND	1	1,2,4-TRIMETHYLBENZENE	ND	1
cis-1,2-DICHLOROETHENE	ND	1	1,3,5-TRIMETHYLBENZENE	ND	1
trans-1,2-DICHLOROETHENE	ND	1	VINYL CHLORIDE	ND	1
1,2-DICHLOROPROPANE	ND	1	XYLENE (TOTAL)	ND	3

ND = NOT DETECTED LOD = LIMIT OF DETECTION APPROVED BY:

SAMPLE ID:

ACME UPSTREAM

Date Completed= 9/25/2019 Prep Method= EPA 5030B

COMPANY: BARR ENGINEERING SOS PROJECT NO: 195110 - 2

NAME: DATE SAMPLED: 9/16/2019
PROJECT NO: ACME TIME SAMPLED: 2:00 PM
WSSN: SAMPLE MATRIX: SURFACE WATER

WSSN: LOCATION:

Units= ug/L (PPB)

ACME DATE RECEIVED: 9/16/2019
SAMPLED BY: MIKE POTTER-BARR ENG TIME RECEIVED: 3:50 PM

Analyst= SW/MM Date Extracted=

EPA 8260 VOLATILE ORGANICS

	5 1111111 Butto E.	ALI GOLOG	Date Completed 7/25/2017 Top Method El A 30						
Analyte	Concentration	LOD	Analyte	Concentration	LOD				
ACETONE	ND	5	cis-1,3-DICHLOROPROPENE	ND	1				
BENZENE	ND	1	trans-1,3-DICHLOROPROPENE	ND	1				
BROMOBENZENE	ND	1	DIETHYL ETHER	ND	5				
BROMOCHLOROMETHANE	ND	1	ETHYLBENZENE	ND	1				
BROMODICHLOROMETHANE	ND	1	IODOMETHANE	ND	1				
BROMOFORM	ND	1	ISOPROPYLBENZENE	ND	1				
BROMOMETHANE	ND	1	ISOPROPYLTOLUENE	ND	1				
n-BUTYLBENZENE	ND	1	METHYL ETHYL KETONE	ND	5				
s-BUTYLBENZENE	ND	1	METHYL-t-BUTYL ETHER	ND	5				
t-BUTYLBENZENE	ND	1	METHYLENE CHLORIDE	ND	5				
CARBON DISULFIDE	ND	1	MIBK	ND	5				
CARBON TETRACHLORIDE	ND	1	2-METHYLNAPHTHALENE	ND	5				
CHLOROBENZENE	ND	1	NAPHTHALENE	ND	5				
CHLOROFORM	ND	1	n-PROPYLBENZENE	ND	1				
CHLOROETHANE	ND	1	STYRENE	ND	1				
CHLOROMETHANE	ND	1	1,1,1,2-TETRACHLOROETHANE	ND	1				
DIBROMOCHLOROMETHANE	ND	1	1,1,2,2-TETRACHLOROETHANE	ND	1				
DIBROMOMETHANE	ND	1	TETRACHLOROETHENE	ND	1				
1,2-DIBROMO3CHLOROPROPANE	E ND	5	TOLUENE	ND	1				
1,2-DIBROMOETHANE	ND	1	1,2,3-TRICHLOROBENZENE	ND	1				
1,2-DICHLOROBENZENE	ND	1	1,2,4-TRICHLOROBENZENE	ND	1				
1,3-DICHLOROBENZENE	ND	1	1,1,1-TRICHLOROETHANE	ND	1				
1,4-DICHLOROBENZENE	ND	1	1,1,2-TRICHLOROETHANE	ND	1				
DICHLORODIFLUOROMETHANE	ND	1	TRICHLOROETHENE	ND	1				
1,1-DICHLOROETHANE	ND	1	TRICHLORFLUOROMETHANE	ND	1				
1,2-DICHLOROETHANE	ND	1	1,2,3-TRICHLOROPROPANE	ND	1				
1,1-DICHLOROETHENE	ND	1	1,2,4-TRIMETHYLBENZENE	ND	1				
cis-1,2-DICHLOROETHENE	ND	1	1,3,5-TRIMETHYLBENZENE	ND	1				
trans-1,2-DICHLOROETHENE	ND	1	VINYL CHLORIDE	ND	1				
1,2-DICHLOROPROPANE	ND	1	XYLENE (TOTAL)	ND	3				
			1						

ND = NOT DETECTED LOD = LIMIT OF DETECTION APPROVED BY:

SHANNA SHEA / LAB MANAGER